Skip to main content

Fangli Liu

Research Scientist at QuEra. Former graduate student.

Graduate StudentAlumni
Profile photo of Fangli Liu

Contact Information

Additional Info

Recent News

  • An artist's depiction of an array of atomic ions controlled by lasers

    In a Smooth Move, Ions Ditch Disorder and Keep Their Memories

    December 20, 2021

    Scientists have found a new way to create disturbances that do not fade away. Instead of relying on disorder to freeze things in place, they tipped a quantum container to one side—a trick that is easier to conjure in the lab. A collaboration between the experimental group of College Park Professor Christopher Monroe and the theoretical group of JQI Fellow Alexey Gorshkov, who is also a Fellow of the Joint Center for Quantum Information and Computer Science, has used trapped ions to implement this new technique, confirming that it prevents their quantum particles from reaching equilibrium. The team also measured the slowed spread of information with the new tipping technique for the first time. They published their results recently in the journal Nature.

  • Cold atoms offer a glimpse of flat physics

    December 20, 2018

    These days, movies and video games render increasingly realistic 3-D images on 2-D screens, giving viewers the illusion of gazing into another world. For many physicists, though, keeping things flat is far more interesting. One reason is that flat landscapes can unlock new movement patterns in the quantum world of atoms and electrons. For instance, shedding the third dimension enables an entirely new class of particles to emerge—particles that that don’t fit neatly into the two classes, bosons and fermions, provided by nature. These new particles, known as anyons, change in novel ways when they swap places, a feat that could one day power a special breed of quantum computer. But anyons and the conditions that produce them have been exceedingly hard to spot in experiments. In a pair of papers published this week in Physical Review Letters, JQI Fellow Alexey Gorshkov and several collaborators proposed new ways of studying this unusual flat physics, suggesting that small numbers of constrained atoms could act as stand-ins for the finicky electrons first predicted to exhibit low-dimensional quirks.