Skip to main content

Observation of Stark many-body localization without disorder

Abstract

Thermalization is a ubiquitous process of statistical physics, in which a physical system reaches an equilibrium state that is defined by a few global properties such as temperature. Even in isolated quantum many-body systems, limited to reversible dynamics, thermalization typically prevails(1). However, in these systems, there is another possibility: many-body localization (MBL) can result in preservation of a non-thermal state(2,3). While disorder has long been considered an essential ingredient for this phenomenon, recent theoretical work has suggested that a quantum many-body system with a spatially increasing field-but no disorder-can also exhibit MBL4, resulting in Stark MBL (5). Here we realize Stark MBL in a trapped-ion quantum simulator and demonstrate its key properties: halting of thermalization and slow propagation of correlations. Tailoring the interactions between ionic spins in an effective field gradient, we directly observe their microscopic equilibration for a variety of initial states, and we apply single-site control to measure correlations between separate regions of the spin chain. Furthermore, by engineering a varying gradient, we create a disorder-free system with coexisting long-lived thermalized and non-thermal regions. The results demonstrate the unexpected generality of MBL, with implications about the fundamental requirements for thermalization and with potential uses in engineering long-lived non-equilibrium quantum matter. Experiments with a trapped-ion quantum simulator observe Stark many-body localization, in which the quantum system evades thermalization despite having no disorder.

Publication Details

Authors
Publication Type
Journal Article
Year of Publication
2021
Journal
Nature
Volume
599
Date Published
11/2021
Pagination
393-+

Download the Publication

Contributors

Groups